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DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
APPLIED TO THE 1-D SPHERICAL NEUTRON TRANSPORT
EQUATION

ERIC MACHORRO *

Abstract Discontinuous Galerkin finite-element methods are used to estimate
solutions to the non-scattering 1-D spherical neutron transport equation. Various
trial and test spaces are compared in the context of a few sample problems whose
exact solution is known. Certain trial spaces avoid unphysical behavior that seem to
plague other methods. Comparisons with diamond differencing and simple corner-
balancing are presented to highlight these improvements.

Key words: linear hyperbolic equation, neutron transport, finite elements, cor-
ner balance method, diamond difference method, discontinuous Galerkin methods,
spherical geometry Sn equations

1. Introduction. On a domain D = [0,1] x [—1, 1] in non-dimensionalized (r, w)
space, the conservative form of the 1-D spherical neutron transport equation is given
in [12] by

0

] 2
(1.1) Lo () + o (1 a

v) +olrmb =

where the cross section and source terms are non-negative: o, ¢ > 0. Vacuum bound-
ary conditions are taken to be the condition that (1,4 <0) =0.

Sections 2, 3, and 4 of this paper introduce respectively the Diamond Difference
(DD), Discontinuous Galerkin (DG) finite-element, and Simple Corner Balance (SCB)
methods considered. Sections 5 and 6 present the test problems and related numerical
results. Conclusions are drawn in Section 7.

1.1. Criteria. The following criteria are commonly used in deciding which nu-
merical method might be used in solving the neutron transport equation.

1. positivity - Given nonnegative boundary conditions, cross section ¢, and
source g, the true solution will be nonnegative. The numerical method should
also yield a nonnegative solution. This avoids unphysical oscillations and the
need for unreliable zero-flux fix-ups. This problem tends to crop up especially
in the vicinity of material interfaces (discontinuities in o or q).

2. avoids flux ’dip’ near the origin - Due to the singular nature of (1.1) near
r = 0, many methods exhibit an aberrant numerical ’dip’ in the neutron flux
calculation that is not physical. This is especially problematic as that region
is often the primary area of scientific interest.

3. convergence - This is closely related to overall accuracy and computational
efficiency but is measured here by the reduction in error as the mesh size is
decreased. Although the local truncation error can, for many methods, be
shown to be second order, the global error is often lower order due to the
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Fig. 1.1. A cell C; g4 = [ri_%,'rH_%] X [ud_%,ud+%] (alternatively referred to as a corner or

subcell) with center r;,uq. In DD based methods, the center-value v¥; q is the average of both pairs
of opposing edges as described by (2.2)-(2.3) with the upstream edge determined by the value of ug.
Here, the larger arrows indicate the characteristic direction associated with pg < 0.

discontinuous derivatives that are inherent in many solutions to problems of
scientific interest. Even in some very simple cases, the true solution lacks
smooth partial derivatives - see §5.2.

4. computational cost - This is roughly measured in the number of arithmetic
operations (flops) required per cell. This can be difficult to precisely com-
pare from one method to another, as flop counts can vary considerably from
one implementation of an algorithm to another implementation of the same
algorithm.

Another common requirement of a numerical method is conservation. Since all meth-
ods considered here are unequivocally conservative, any comparison based on that
criterion is omitted here in the interest of brevity.

1.2. Mesh. A mesh dividing the domain D = [0,1] x [-1,1] in (r, u) space with
ny radial zones {[r;_1,r; 1]}z, and n, angles is used. Half-indices in the radial
direction are interpreted as r; 1 = r; + Ar; /2. However, angular discretization is
slightly different from one method to the next. In the Diamond-Difference, Weighted
Diamond-Difference, and Simple Corner Balance methods, py = —1 and p, 1=

pa—1 +wq for {wa}, the set of Gauss Legendre quadrature weights. This leads to a
collection of cell edges with the interesting property that

—lzu%<u1<...<ud_%<ud<ud+%<..</,bn#<unu+%:1

where {p14}}" , is the set of n,, Gauss-Legendre points on the interval [—1, 1] associated
with the quadrature weights {wq}.
For the various discontinuous-Galerkin (DG) methods considered here, angular
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cell edge values 41 are the same as in the Diamond Difference method. However,

R
= 5 .
Where the context is clear, the subscript DG above will be dropped. In the presen-

tation that follows, it is often assumed that ¢ and o are piecewise constant.
It will be convenient to define a cell,

(Nd)DG

(12) Cz',d = [Tiféari+%] X [Md—%;ﬂd-}-%]

and use the term cell, subcell, and corner interchangeably. In §4, the definition of a
macrocell is introduced. It is distinct from the definition above.
Formally, a mesh M is the collection of cells

M={Ciq:1<i<n,and1<d<mn,}.

2. Diamond Difference Method. The diamond difference method (DD) is a
common technique for solving the neutron transport equation, and it is well described
in the literature. In particular, [12] has an extensive description. To balance clarity
with brevity however, the basic equations of the DD method are presented here with
only a brief exposition.

Taking equation (1.1) with g = pg and integrating over the volume V; of the
spherical shell of radius bounded by »,_1 and r; 1 we arrive at

)

Hd
V(Ai+%¢i+%,d - A'—;%f%,d)
AA;
(2.1) oy @ariPiary — Cay¥ia-y) +0%ia = Gia

— A2 _ . . . _
for A 1 = 47Wi+§7 AA; = A 1 —A;_1, and angular differencing coefficients g, 1 =
Qg1 — PdWq chosen to maintain conservation properties. Note that V; = %’r(rf 1T

2
ri3_ ). The approximation

(Ai+% — A1 )ia

2

DN | =

’I"i+%
47r/ r (r, pg)dr =

is also used in deriving (2.1) from (1.1).
As auxiliary equations, the DD method assumes that cell edges are “averaged”
across the interior of the cell, in that

Yiytat Vit

(22) "pi,d = B) ) and
Vidgrt T Va1
(23) fra = ot E

2.1. Weighted Diamond Difference Equations. The weighted diamond dif-
ference (WDD) method was introduced in [14] in an effort to remove certain spurious
unphysical artifacts that seemed to plague the DD method (see §6.3).

The method is based on the DD balance equation (2.1), but uses modified auxil-
iary relations, replacing the auxiliary equations (2.3) with a weighted average

(2-4) ¢i,d = Td¢z‘,d+% + (1 - Td)wi,dfé
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for angular differencing weights {74},", defined by

(2.5) S
Hayl — Ha-1

It should be noted that the angular-discretization ideas of [14] can be incorporated
into other schemes for radial discretization. In fact, Walters and Morel in [17] incor-
porate a radial discontinuous Galerkin method with a WDD angular-discretization
scheme, and report some success when the angular mesh is poorly resolved. See §6.3
for further discussion.

3. Discontinuous Galerkin Finite Element Method. Discontinuous finite
element methods have long been applied to neutron transport problems in a variety of
different settings, for example [1], [4], [6], and [10] among many others. This particular
geometry has not been as extensively studied in the literature, however, with [15],[16],
and [17] being the only recent references on the subject known to this author.

It is easiest to introduce the discontinuous-Galerkin (DG) finite element method
in the following four parts:

1. The Weak form of the transport equation is said to hold if ¢ satisfies

Moyl 2
[ LAt
+/Tté/u 1 ( )¢—q>rdudr:0

i-3 -3

for all cells C;q = [ri,%

sTixy] X (g1, Bay 1], and all test functions 7(r, p)
in an appropriate function space as described below. See also [7].

2. Test Functions: The main test-spaces being considered here are the sets of
T € K; 4 where K; 4 is one of the following polynomial spaces:

(3.2) DGiep : Kiqg = span{l}
(3.3)  DGhitinear : Ki,a = span{l, (r —ri), (u — pra), (r — i) (0 — pa) }

for (r;, pq) the cell center. Other test function spaces are also considered,
some of which are discussed here in §6 and in [15].
3. Trial Functions: Within a given cell, the approximate solution 1)es; (7, ) is

represented also as a member of the set K; 4. As an example, for appropriately

chosen constants {'7(0 0), 72(1(10) , %((311) , 'yz(ldl)}, the DGhitinear method estimates

1 by the following:

1
(3-4) Yest (T, 1) Z ’Y( b) (r—r)*(p— ud)b €EKiq
a,b=0

for (r,p) € [ri_1,mip1] X [g_1,mqs1]. The constants are determined from
the weak form of the equation (3.1).

4. Cell Edges receive/transmit boundary information in the characteristic di-
rection (depending on ) to and from adjoining cells vis-a-vis integration by
parts applied to (3.1):
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In order for (3.1) to hold for all 7 € K; 4, it is sufficient to consider only the basis
functions that generate K; 4. The bilinear case is worked out in more detail below.

3.1. Bilinear Discontinuous Galerkin. In the bilinear case (DGuiiinear), We
need only consider the following test functions:
T(Ta N) =1, (T - T,’), (N - Nd)a or (T - Ti)(u - Nd):
where in the cell C; 4, the estimated solution 1.5 consequently has the form

West(r, 1) = 150 + 450 (r = r0) + 45 (1 = pa) + 45 0 = 1) (4 — pa).

Solving for the coefficients {fyz(a by ab=0 in (3.4) yields four (linear) equations relating
the four unknowns. Even though ‘these equations are based in the cell C;q4, it is
important to note that following the characteristic “flow” of information,

1
(36) Wrpa-y) = D A =1 ey = pa1)’,
a,b=0
b
3.7) Tigls M) Z yeD sy 1= 7i1) (1 — pa)’
a,b=0

for p < 0. This is extremely important in properly calculating the boundary terms in
(3.5). For u > 0, (3.7) is replaced with

(3:8) Z YDy =1 1) (8 = pa)"

a,b=0

3.2. Constant DG Method DGgep. In the discontinuous Galerkin method
DG tep, the trial and test function spaces are all piecewise constants. K; 4 = span{1}.
Therefore, 8,7 = 0,7 = 0. This remarkably simplifies the weak form of the equation
by reducing (3.5) to the equation

Hatg itd Tit} Fatl
[ W) dn [ =t w|
ud+% 2
(3.9) +/ / ( 1)y (7, ) — q(r, u)) dp dr =0
-1 Hd—%
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The boundary terms are evaluated using upstream information, and since
0,0
17[)|Ci,d(/r’ /J’) = Fyi,d ’

the method requires that

(3.10) Y(r, 1) = 75y
and
(3.11) Y(rip1,p) = 'yg’f’)d if 4 <0 else

‘/’(Tz’—%:ﬂ) = ’Y,(E’lo’)d when p > 0.

4. Simple Corner Balance Method. Adapting the Cartesian corner-balance
method in [3] to the spherically symmetric neutron equation (1.1) as in [16], it is
convenient to think of a block of four adjoining cells with corresponding cell centers
(r2isp2d); (T2i-15p2d), (T2i—1,p2d4-1), and (ra;, fi2g—1), as a single macro-cell, where
each “sub-cell” or “corner” has a slightly different set of auxiliary relationships with
its neighbors. To be precise, a macro-cell denoted M; 4 consists of the following cells

(4.1) M;. g = Cai2q4 U Cai—1,24 U Cai—1,2d—1 U C25—1,24-1-

This method requires both n,, and n,, to be even. It is important to note the distinction
between a subcell defined by (1.2) and the definition of a macro-cell above (4.1).

The main balance equations from the DD method (2.1) are used within each sub-
cell. In the case that u < 0, the following auxiliary relations are used. Starting with
the known or previously calculated upstream “inherited” data that “flows” into the
macro cell:

(4.2) Vait 1 oqg = V2iv1,2ds
¢2i+%,2d71 = Y2it1,2d-1,
¢2i,2d—g = t2i,24-2, and

¢2i—1,2d—§ = wZi—1,2d—2 for —1 < H2d < 0.

2

Recall that it is assumed for illustrative purposes that psg < 0 and therefore the
characteristic direction is radially inward. Internal to the macro-cell are four more
auxiliary equations that “take averages” across adjoining sub-cells within a given
macro-cell:

(4.3) VYoi_12d-1 = %(1/121'—1,211 + 2i—1,2d—1)
Voi_ 124 = %(1/121',2(1 + 2i-1,24)
Vai0a—1 = %(1/121',2(1 + 92;,24—1)
Voi12d-1 = %(¢2i,2d—1 + 12i-1,24-1)
The mesh described by these points is illustrated in Fig. (4.1).

Through direct algebraic substitution and manipulation we arrive at four linear
equations in the four unknown corner/sub-cell values:

6
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% Characteristic direction (downwinding relation)

F1G. 4.1. This is a macrocell consisting of 4 subcells or corners: Ca; 24, C2i—1,24,C2i—1,2d—1,
and Ca; 54—1. Downwind/Characteristic direction corresponding to p < 0. See (4.4), (4.5), (4.6),
and (4.7) for the associated equations.

1
(4.4) 'l:/—? (A2i+%"/}2i+1,2d — Ay 3 2 (21,24 + ¢2i—1,2d)> +
K3
AAs; 1
KV; (a2d+%¢2i,2d —Qgq_1 §(¢2i,2d + ¢2i,2d—1)) + 024,24 = Q24,24
H2d 1
(4.5) (Agl-,l = (V25,24 + V¥2i-1,24) — A2i7§¢2i—1,2d) +
Vai—1 22 2
AAs; 1 1
W;_l (a2d+%'€b2i—1,2d — Qg1 5(’4#21'—1,211 + ¢2i—1,2d—1)) + 021,24 = @2i—1,2d
_ 1 1
(4.6) l‘z(jill (AQZ'—% 5 (W2i2a-1 + ¥2im1,20-1) — Ayi_g §¢2i—1,2d—1)
AAzi g 1
+ P T (042(1,% 5(1/121'71,2(1 +P2i1,24-1) — azd,gdiziq,zdfz)
+0Y2i-1,2d—1 = G2i—1,2d—1
H2d—1 1
(4.7) Ve (A2i+%¢2i+1,2d—1 —Ayi_1 §(¢2i,2d—1 + ¢2i—1,2d—1)) +
X3
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AAy;

1
m (azd_% 5(1/121',2(1 + ¥2;,24-1) — azd_g¢2z‘,2d—2) + 0Y2i,2d—1 = G2i,2d—1

5. Example Problems. It should be emphasized that all the test problems
considered here are limited in that they contain neither scattering nor fission terms.
In a more realistic setting the right-hand side of (1.1) might have a more complicated
expression of the form

+1
q(r, My ¢) = f(ra N) + k(’f’, My N')¢(T, Iil)d,ul-

-1

However, it is the intent of this article to focus only on discretizations of the streaming-
plus-collision part of the transport operator as expressed by the left-hand side of (1.1).
Therefore, k = 0 is assumed here, although [14], [15], and [17] consider the more
common case where k(r, u, ') = 1o,(r) for appropriate scattering coefficient o, with

= 50,
oc—os>0.

5.1. Smooth Solutions & Method of Manufactured Solution. Picking
Yirye = exp(rp) and adjusting o, ¢ and the boundary conditions to obey (1.1), an
artificial, smooth solution can be “found” or manufactured. For instance:

(5.1) ¥(

This is an artificial test problem of little practical value being used here for the
purpose of comparing convergence rates using a solution that has a full set of deriva-
tives. This is in contrast to typical situations that arise such as described in §5.2.

Many other manufactured solutions can be produced in this manner to test
these methods. Some are better than others for comparison purposes. Of course
if Ytruelc: . € Ki,q for all 4,d then the corresponding DG method will solve the neu-
tron transport equation exactly. For example, if ) = ru+1, then DGyiinear will solve
(1.1) exactly. This would be an unfair test problem to compare with other methods,
although it may be helpful as a programming tool in double-checking and debugging.

5.2. Absorbing Media Test Problems. Two test problems are considered
here, both of which are described in [9]. The function

(5:2) b ) = L (1 - etk imrT=))

is the solution to the transport equation (1.1) with vacuum boundary conditions where
both the source term (gq) and the cross section (o) are constant. It is interesting to
note that

(5.3) Opt(r, p) = q(e“’(”‘“/m )) (“ - %)

and that on the curve
1—-7r2(1—p?) =0

the derivative is infinite. In particular, at the point »r = 1, = 0 the derivative is
infinite and can cause 9,¢(1) = —oo where ¢ is the scalar flux defined by (6.1).
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The standard method of estimating error rates based on local truncation errors
is founded on the assumption that the true solution has a full set of continuous
derivatives. This is not the case here, even though it is one of the simplest non-
trivial test problems conceivable. Therefore, there is no prima facie reason to believe
that commonly believed “second-order” numerical methods will have second order
accuracy when used to solve these types of problems. Theoretical error estimates in
a cylindrical geometry have been discussed in [4]. Carlson et. al [6] also discuss error
estimates under certain conditions.

Problems where there are two distinct regions each with separate material prop-
erties are modeled as follows (7,4 is the location of material boundary):

o1 if0<7r<rmg,or _J @ if0<r <rpm,or
(54) 0'(7') N { 02 if Tmid < T < Trmaz 7') B q2 if Tmid <7 < Tmaz

The solution is a bit more complicated than in the single-region case (5.2). For
purposes of completeness, the explicit solution is given here but can also be found in
[9]-

When 0 < r < 759 then

(5.5) W(r, p) = 3_1(1 — eo1(rit9))

q2 —o1)s— - —
4 22 ploz—01)s <71w(e T25 _ o a2t)
03

When r,:0 <r <1and —1 < p < /1 — (rmia/r)? then

(5.6) lr,p) = (1= T2 00H),
2

When 7,50 <r <1and \/1— (rpa/r)? <up<l,

(5.7) Y(r,p) = Leraoarn(] — g~201)

g1

+ @62(02—01)5—027"” (6—023 _ e—a’gt)
02

B (1 _ —0oa(rp—s)
+ 02(1 e~ o2 )

In these equations, (5.5), (5.6), and (5.7), the distances s and ¢ are given by

s= \/rfm.d —r2(1 — p?)

)

The following two sets of parameters are used to compare the various methods:
i. Test problem whose solution is given by (5.2) where ¢ = ¢ = 1.
ii. Test problem given by the solution of (1.1) with (5.4)-(5.7) described by

Pmia = -4, 01 = 1078, 05 =100, ¢1 = 1, and ¢» = 0.



F1G. 5.1. Parameters used in Type (i) test problem described by (5.4)-(5.7). A neutron source
“region”, encased by a outer strongly absorbing “shielding” region. The outer boundary is at r = 1.
Vacuum boundary conditions are given as ¥(1,u) = ¥p = 0 for p < 0. The interface between the
two regions is at Ty = 4

6. Results and Comparisons. The scalar flux is defined as

+1

(6.1) #(r) = Y(r, p)dp.

-1

It is frequently convenient to present numerical results using the scalar flux defined
by (6.1) as in Fig. 6.3 and 6.4. Quadrature is used to calculate the integral quantities
whereby

d=n,

i = Z Vi, aApa.

d=1

However when errors are reported such as in Fig. 6.1 and 6.2, the following L-» based
norm is used

Ny Np

(62) Eest = Z er ('l/}e:cact(riaﬂd) - fjit)zAriAﬂd

i=1 d=1

6.1. Convergence. It is interesting to note in Fig. 6.1 and 6.2, that the
DGhitinear method generally has better convergence than the SCB, WDD, DGy,p
or DD methods. Even in the case where the error rate is comparable (i.e. as in Fig.
6.2 the slopes of the lines are not very different), the actual error in the DGpijinear
method is often less than the SCB and DG 4., methods by a factor of 10 to 100.

The higher accuracy may outweigh the substantially lower computation costs that
the SCB method would have. See the table in §7.
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Smooth problem with true solution y(r,u) = e™

107'g ‘ —
107 1
R~ _
10° B R -
~ Y
FoL RN T 4
™ >l IR
5 - o
£ * ~._
i ~ -
= 5 RN T
=10 ~ T4
S
10° > E
A DD converges at O(h'4) >
10" H -©- SCB converges at O(h'") RS E
< WDD converges at O(h1'2) 0o Sk ]
* DGbmnear converges at O(h““) N
DG___converges at O(h'82) ¥
10_8 step N N R N N N N N N -
101 102 103
n number of radial zones where nLl = 2nr
F1c. 6.1. ||.||]2 error as function of the number of radial zones, n,. The true solution,

Y(r,u) = e, has well-defined derivatives of all orders. This is a test problem presented to show-
case convergence properties. The vertical axis is €ecst, the Lo error of the neutron flur defined by
(6.2). The horizontal azis is nr, depicting the increasing resolution of the mesh where the number
of angular nodes is twice the number of radial nodes: n, = 2n,. In the legend, h = ni

id

With the exception of the smooth problems such as the one discussed in §5.1 the
DD, WDD and DGpijineqr methods seem to have comparable convergence rates. The
lower computational costs would suggest that the DD and WDD methods might be
preferable to DG methods were it not for other numerical properties of interest such
as positivity and elimination of the flux-dip.

6.2. Oscillations and Positivity. Non-physical oscillations and negativity are
well documented problems in numerical differential equations as a whole (e.g. [11])
and for neutron transport in particular [13], [18]. Both WDD and DD methods exhibit
such non-physical numerical aberrations as is common with classic centered-difference
type methods. This is especially common in the presence of strong discontinuities in
o and ¢ such as those posed by the Type(ii) problem in §5.2. See Fig. 6.3.

Below in Table 6.1 is a comparison of various DG solutions to the Type (ii)
mixed media problem. Again it is interesting to note that in all cases, there are little
or no oscillations (see also Fig. 6.4). However under more extreme conditions where
o2 = 1000 (as in (5.4)), numerical experiments revealed that minor oscillations can
crop up.

6.3. Flux-dip and other r=0 inaccuracies. It has been observed in [9], [14]
- [17] that the DD method can exhibit non-physical inaccuracies near r = 0.
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Single media Type(i) problem

10 ‘ — :
107}
4
]
wd)
S, 3
5 10
==
10"
A DD converges at O(h'?) T >
—©- SCB converges at O(h®) RN " ~o
< WDD converges at o(h'3) 12 S~ T
* DGb.. converges at O(h ) ~ ~
ilinear 92 ~ &
DG_,__converges at O(h“%) ~
step ~.
1075 1 ’ ’ ’ ’ ’ — 12 ’ ’ ’ ’ ’ — 3
10 10 10
n number of radial zones where n}l = 2nr
FI1G. 6.2. ||.||2 error gest in ¢ for Type(i) problem as function of number of radial zones.
Horizontal azis is ny. Here the number of angular zones is exactly twice the number of radial zones:
ny = 2n.. Also h = ni See §1.2 for details on the mesh shape. The error rates are similar: O(hP)

for p = .92 to 1.3. Hm;)ever, the DGyijinears DD, and WDD methods have a much lower error than
the SCB and DGgtep

One of these inaccuracies comes in the form of a “flux-dip”. Fig. 6.3 shows that
both SCB and DD methods exhibit a flux-dip. The flux-dip is a complicated effect
that involves angular discretization, spatial discretization, and boundary conditions
at the origin of the sphere. The flux-dip has been studied predominantly in settings
where there is a

1. scattering operator term incorporated into the RHS of (1.1),

2. highly refined radial discretization (large n,), and

3. low resolution angular resolution (small n,) coupled with a

4. non-uniform angular discretization such as Gauss-Legendre quadrature.

In an investigation of the DD method, [14] developed a theory of the flux dip
phenomenon in the context of highly diffusive, scattering media. Their results show
that flux-dip phenomenon can be ameliorated by substituting the WDD angular dis-
cretization (2.4) for (2.3). Results here show that by including both linear and bilinear
terms in the trial and test spaces, the discontinuous Galerkin methods can suitably
remove the flux dip.

In the context of Table 6.1, it should be noted that only lower order methods
that lack a linear dependence on both angular and radial variables exhibit a flux-dip.
It was observed that the flux-dip can, in many cases, be avoided by simply using
a uniform angular discretization. Although discussed in the context of the DD and
WDD methods, [14] has a very nice discussion of this phenomenon.
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Two region problem comparison
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FiG. 6.3. A comparison of scalar fluz for Type(ii) mized-media problem. The ’quasi-ezact’
nature of the solution comes from applying o quadrature approrimation to the exact neutron fluz

Yezact Yielding ¢(r;) = Ejz;”d Yezact(Ti, bd)Ag. Note the fluz ’dip’ near v = 0 for some methods,
and the oscillations that can occur with others at r = .4. Here, as elsewhere if not stated otherwise
ny = 2n, = 40.

Walters and Morel in [17] noted that the bilinear DG method (which they refer
to as the SLD - standard linear discontinuous methos) can exhibit a different class of
inaccuracies at the origin under conditions #2 and #3 outlined above (highly refined
radial mesh, but poorly refined angular mesh). Compare for example, Fig. 6.5 with
Fig.1 of [17]. Walters and Morell claim this is a result of insufficient starting direction
information (incorporating solution information where y = —1). They offer a clever
modification of DGp;ineqr incorporating more starting flux information by limited
use of continuous-quadratic-in-angle functions.

However, results in Fig. 6.5 suggest that considerable improvement can be made
in the solution’s behavior at the origin by simply including p? term in either the
linear or bilinear DG method, neither of which use starting direction information (see
in particular the bilinear hybrid method in Fig. 6.5). Numerical experiments show
that comparable improvements are made if along the cells bordering the p = —1
direction, higher order p spaces are used, analogous to the idea of [17] but in the
discontinuous setting .

7. Conclusions. In view of the criteria described in §1.1, as long as the DG
method includes first order terms in the test and trial spaces, it offers several advan-
tages as can be seen in the summary Table 7.1. In particular, DGyjjineqr has an all
around superior performance when compared to the DD or SC' B methods.

The DGhitinear method has very little oscillation or negative flux problems es-
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TABLE 6.1
Comparison of Various DG methods on Type(ii) two-media test problem described in §5.2.

Trial/Test Space Oscillations Dip Error

Kiq nearr=.4 atr=0 rate* h= -

span{1} no yes h-69 DGstep
span{l, u} no yes h"? DG —iinear
span{l,r} no yes ' DGr—iinear
span{1,r, u} no slight ht2

span{l,r, p,rp} no no ht-2 DGhitinear
span{l,r, p,rp, p?,r*} no no h'-3 DG yuadratic
span{l,r,r*} no yes ht0

span{1, u, u*} no yes 72

span{l, p, T} no yes 72

spand{1l, p,rp, p?} no yes K72

span{1, p, %, u®} no yes h7?

*: By comparison, the DD and WDD methods converged at O(h!-2) and SCB con-
verged at O(h-"%) for the same problem with a slightly different mesh. See §1.2 for
differences in mesh.

TABLE 7.1
Summary Table

Criteria DD WDD SCB DGBiinear DGstep
1.Positivity no no yes yes yes
2.Avoids dip’ nearr =0 no yes no yes no
3.Convergence rate
Smooth problem 1.2 1.2 1.1 2.2 .82
Type (i) problem 1.3 1.3 .93 1.2 .92
Type (ii) problem 1.2 1.2 .76 1.2 .69
4. Approx. Flops/Cell 37 37 39 320 19

(sub-cells in SCB)

pecially when compared with the WDD and DD methods. Although the SCB and
the DG step methods maintain strict positivity in the test problems considered, they
exhibited other unphysical behaviors and lower rates of convergence.

Furthermore, the DGpijineqr method avoids the flux dip problem that plague some
other methods. Lower order discontinuous-Galerkin methods such as the DG gp
are susceptible to the r = 0 flux dip problem as are the DD and SCB methods.
The WDD’s well documented feature is that it avoids the flux-dip problem in most
numerical regimes of interest.
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F1G. 6.4. A comparison of scalar flur for the Type (ii) mized media problem estimated with DG
methods using some of the possible test and trial spaces not presented in previous figures - see Table
6.1. Note that in all these cases, there is little to no oscillation near r = .4 regardless of test-space
being used. n, = 20 and n, = 40.

It should be noted that discontinuous-Galerkin methods will tend to have a higher
computation cost per cell when compared to other methods. Furthermore, this com-
putation cost increases as higher-order test and trial spaces are used: A m = dimK; 4
dimensional trial space will require an m x m dense matrix solve for each cell. Gen-
erally however, as can be discerned from Fig.6.1, Fig. 6.2, and Table 7.1 the greater
accuracy of the DGpiiineqr can significantly outweigh the increased computational
costs.

8. Future Work. The opportunity for combining several of the ideas described
here is great. For example, combining the SCB method with the idea of a weighted
angular-discretization will remove the flux-dip and and maintain positivity. Unfor-
tunately, numerical experiments suggest that the poor convergence properties of the
SCB method are retained when compared with the DGyijineqr method.

Other combinations might prove fruitful. Several authors [9], [17] have discussed
using a linear discontinuous-type method that incorporates a quadratic-continuous
scheme in the first angular cells. Numerical experiments suggest that certain quadratic
discontinuous elements (or perhaps other test and trial-space combinations) might
suffice (i.e.the bilinear hybrid method in Fig. 6.5). This might retain some of the
numerical properties desirable while maintaining lower computation costs per cell.
Other (non-linear and/or higher-order) flux-limiting type methods [11] might be in-
corporated as well under such circumstances. This might even be generalizable to
adaptive schemes for picking test/trial spaces.

In the presence of scattering, [15] describes an iterative technique used in highly
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Fi1gc. 6.5. A graph of the neutron fluz at the origin using a variety of numerical methods
described here. Solution parameters determined by o = 1, ¢ = 0, and isotropic incoming boundary
conditions, such that the true solution at the center is 3.64 independent of pi. The solution is resolved
on a mesh with n, = 1000 and n, = 4. SCB and DGstep are not included in the graph as the results
were grossly inaccurate in comparison to the methods presented above with 200% to 1000% relative
errors. The bilinear hybrid method uses p-quadratic test/trial functions in the cells that abutt the
u = —1 boundary, yet uses bilinear test/trial functions otherwise

diffusive conditions in this geometry: Diffusion Synthetic Acceleration. They report
excellent performance for some finite element methods but poor performance on oth-
ers. Numerical experiments conducted on the DGp;jinear Seem to show some promise
when compared to DD methods, but a more detailed effort is required to more fully
understand its convergence properties.
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